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Abstract

In this dissertation we will first introduce historically the invention
of the Pendulum by Christiaan Huygens, in particular the cycloidal
one. Then we will discuss mathematically the cycloid curve, related to
the Tautochrone Problem and we’ll compare the circular and cycloidal
pendulum. Finally we’ll introduce Abel’s Integral Equation as another
way to attack and solve the Tautochrone Problem.

1 Historical Introduction

Christiaan Huygens (14 April 1629 - 8 July 1695), was a prominent Dutch
mathematician, astronomer, physicist and horologist. His work included
early telescopic studies elucidating the nature of the rings of Saturn and
the discovery of its moon Titan, the invention of the pendulum clock and
other investigations in timekeeping, and studies of both optics and the cen-
trifugal force.
In 1657 patented his invention of the pendulum clock and in 1673 published
his mathematical analysis of pendulums, Horologium Oscillatorium sive de
motu pendulorum, his greatest work on horology. It had been observed by
Marin Mersenne and others that pendulums are not quite isochronous, that
is, their period depends on their width of swing, wide swings taking longer
than narrow swings. Huygens analysed this problem by finding the shape
of the curve down which a mass will slide under the influence of gravity
in the same amount of time, regardless of its starting point; the so-called
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Tautochrone Problem. By geometrical methods which were an early use of
calculus, he showed that this curve is a Cycloid.

”On a cycloid whose axis is erected on the perpendicular and
whose vertex is located at the bottom, the times of descent, in
which a body arrives at the lowest point at the vertex after hav-
ing departed from any point on the cycloid, are equal to each
other...”1

2 The Cycloid

The cycloid is the locus of a point on the rim of a circle of radius R rolling
without slipping along a straight line. It was first studied by Nicola Cusano
and it was named by Galileo in 1599. It is also the solution to the Tautochrone
Problem.
The cycloid is represented by a parametric expression that contains the radius
R of the circle and the rotation angle θ. The following formula represents
two cycloids generated by a circle of radius R, one trough the origin and the
other trough π, which consist of the points (x, y), with

C± ≡
{
x = R(θ ± sin θ)

y = R(1− cos θ)
θ ∈ [−π, π]

For a given θ, the circle’s centre lies at x = Rθ, y = R.

2.1 Arc Length

The arc length of a curve defined parametrically by x = f(t) and y = g(t) is

s(θ) =

∫ θ

0

ds where ds =
√
dx2 + dy2

For the cycloid we have
{
dx = R(1± cos θ)dθ

dy = R sin θdθ

1Blackwell, Richard J. (1986). Christiaan Huygens’ The Pendulum Clock. Ames, Iowa:
Iowa State University Press. ISBN 0-8138-0933-9. Part II, Proposition XXV, p. 69

2



so

ds = 2R cos
θ

2
dθ ⇒ s(θ) = 4R sin

θ

2

2.2 Critical Points

From the study of the first derivative we obtain

dy

dx
=

sin θ

1± cos θ
=

{
tan θ

2 (C+)

cot θ
2 (C−)

we have the maxima for C+ in θ = 0 + kπ and minima for C− in θ = kπ.
While from the study of the second derivative we get2

d2y

dx2
= ± 1

(1 ± cos θ)2
=






1
4cos2 θ

2

> 0 (C+)
−1

4sin2 θ
2

< 0 (C−)

C+ has always a positive curvature and C− a negative one.

A′ ⇔ θ = −π

{
x = −πR

y = 2R
; O ⇔ θ = 0

{
x = 0

y = 0
; A ⇔ θ = π

{
x = πR

y = 2R

For C+ the circle rolls over the line y = 0
For C− the circle rolls under the line y = 2R

2Let us recall
{
cos2 α− sin2 α = cos 2α

2 cosα sinα = sin 2α
⇒

{
sin2 α = 1−cos 2α

2

cos2 α = 1+cos 2α
2
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Figure 1: Plot of Cycloid with R = 1 and −π < θ < π, C+ (continuous) and
C− (dashed)

3 Circular Pendulum vs. Cycloidal Pendu-
lum

Now we consider the equation of motion for a particle mass constrained to
move in a vertical curve without friction. The equation is:

Ft(s) = m
d2s

dt2

where Ft(s) is the tangential force and s the curvilinear abscissa. Gravity is
the only force acting upon the mass, so

Ft(s) = −mg cosφ; cosφ =
dy

ds
.

With this equation one can describe the motion of two type of pendulums:
the Circular Pendulum, first studied by Galileo Galilei in 1581, and the
Cycloidal Pendulum, studied by Huygens in 1673.

3.1 Cycloidal Pendulum

Starting from the previous equation for a cycloidal curve, generated by a
circle of radius R

{
x = R(θ ± sin θ)

y = R(1− cos θ)
− π ≤ θ ≤ π
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we have

dy = R sin θ dθ and ds = 2R cos
θ

2
dθ

then we obtain

cosφ =
dy

ds
=

sin θ

2 cos θ
2

= sin
θ

2

and the equation of motion becomes

d2s

dt2
+ g sin

θ

2
= 0

also noting that

s(θ) = 4R sin
θ

2
=⇒ sin

θ

2
=

s

4R

we finally have

d2s

dt2
+

g

4R
s = 0

The result is an harmonic motion ∀s = s(θ) with period

T = 2π

√
4R

g

that does NOT depend on the amplitude of the oscillation.

3.2 Circular Pendulum

In the case of a circular curve of radius L
{
x = L sinα

y = L(1 − cosα)
− π

2
≤ α ≤ π

2

we have

dy = L sinα dα and ds = Ldα
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Figure 2: Cycloidal pendulum: T = T0, Circular pendulum T ≥ T0, T0 =

2π
√

L
g with L = 4R

then we obtain

cosφ =
dy

ds
= sinα

and the equation of motion becomes

d2s

dt2
+ g sinα = 0

d2α

dt2
+

g

L
sinα = 0

In this case there is an harmonic motion only for sinα ≈ α with period

T * 2π

√
L

g
.

4 Abel and Tautochrone

Niels Henrik Abel attacked a generalized version of the Tautochrone Problem
(Abel’s mechanical problem), namely, to find, given a function T (y) that
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specifies the total time of descent for a given starting height, an equation for
the curve that yields such result. The Tautochrone Problem is a special case
of Abel’s mechanical problem when T (y) is a constant.
For the principle of conservation of energy, since the particle is frictionless,
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Figure 3: Tautochrone curve

and thus loses no energy to heat, its kinetic energy at any point is exactly
equal to the difference in potential energy from its starting point. Formally:

1

2
m

(
ds

dt

)2

= mg(y0 − y)

where ds
dt is the velocity of the particle, s the distance measured along the

curve and mg(y0−y) the gravitational potential energy gained in falling from
an initial height y0 to a height y.

ds

dt
= ±

√
2g(y0 − y)

dt = ± ds√
2g(y0 − y)

dt = − 1√
2g(y0 − y)

ds

dy
dy
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In the last equation, we’ve anticipated writing the distance remaining along
the curve as a function of height (s(y)) and recognized that the distance
remaining must decrease as time increases (thus the minus sign).
Now we integrate from y = y0 to y = 0 to get the total time required for the
particle to fall:

T (y0) =

∫ y=0

y=y0

dt =
1√
2g

∫ y0

0

1√
y0 − y

ds

dy
dy

This is called Abel’s integral equation and allows us to compute the total
time required for a particle to fall along a given curve (for which ds

dy would
be easy to calculate). Abel’s mechanical problem is the opposite one: given
T (y0) we wish to find ds

dy , from which an equation for the curve would follow
in a straightforward manner.
To proceed, we note that the integral on the right is the convolution of ds

dy

with 1√
y and thus take the Laplace transform of both sides:

L[T (y0)] =
1√
2g

L
[

1
√
y

]
L
[
ds

dy

]

Since L
[

1√
y

]
=

√
πz−

1
2 , we now have an expression for the Laplace transform

of ds
dy in terms of T (y0)’s Laplace transform:

L
[
ds

dy

]
=

√
2g

π
z

1
2L[T (y0)]

For the tautochrone problem, T (y0) = T0 is constant. Since the Laplace
transform of 1 is 1

z , we proceed:

L
[
ds

dy

]
=

√
2g

π
T0z

− 1
2

Making use again of the Laplace transform above, we anti-transform and
conclude:

ds

dy
= T0

√
2g

π

1
√
y
.
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Now if we let

ds

dy
=

√

1 +

(
dx

dy

)2

and b =
2gt2

π2

we obtain

dx

dy
=

√
b− y

y
from which x =

∫ √
b− y

y
dy + c

with the substitutions

y = b sin2 φ, b− y = b cos2 φ b =
R

2
and dy = 2b sin cosφdφ

x =

∫ √
R cos2 φ

R sin2 φ
R sin cosφ dφ = R

∫
cos2 φ dφ+ c

Recalling

cos2 φ =
1 + cos 2φ

2
with 2φ = θ

we finally have
{
x = R(θ ± sin θ)

y = R(1− cos θ)
.
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